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Rasmus Tonboe @RasmusTonboe . 14 gy,

@SteffenMalskaer got the difficult task of retrieving our oceanographic moorings and
weather station on sea ice in North West Greenland this year. Rapld meit and sea ice
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Diverso parere
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Attenzione el a"‘“‘mls!lcheeﬁtlizi

agli eccessi
catastrofisti

d1 Emilio Gerelli

scaldamento globale, IIntergo

vernmental panel on climate
change (Ipee), ha presentato ieri 21 pagine
di Sintesi per i politici, in attesa di un pia
robusto Rapporto, promesso, ma rinvia-
t0. Cib impedira agli scienziati di vagliare
le affermazioni della Sintesi, mancando i
dettagli. Dipit, contrariamentealla prete-
sa del Panel di rappresentare la comunita
scientifica, laSintesi & statasottoposta, co
me pre, al controllo politico dei Go-
verni partecipanti al Panel

Addio, dunque, all'indipendenza della

scienza, come ¢ provato da passate prote
ste di studiosi sul fatto che le Sintesi non

ntavano correttamente le con
Rapporti approfonditi. Peral-
tro, anche gli esperti del Panel sono di no-
mina governativa. Non vengono, quindi,
scelti dagli studiosi competenti: situazio
ne analoga a quellain cuii professori uni
1 vengono liber
dai loro pari competenti, ma da un mini-
stro. Risultato: laricerca vaarotoli

La Sintesi prevede notevoli aumenti

del livello del mare ¢ della temperatura a
fine secolo. Quanto alla solidita di queste
siond, si tace sul fatto che esse po
no principalmente su simulazioni da ¢al
colatori, che dovrebbe: 1
plicatissimo siste ico:un compi
to da molt ritenuto impossibile. Anche

I 9 organodell’Onu che indaga sul ri-
|

versiant

prey

CHI E DISPOSTO A PAGARE

Nel documento mancano
dettagli importanti

per la valutazione scientifica
Grandi inquinatori fuori

dal protocollo di Kyoto
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Fenomenologia del Climate Change:
misure strumentali
[1850-presente]



Temperature anomaly (°C) relative to 1961—1990

Temperatura Media Globale Superficiale

Annual average

Decadal average

1900

Year

1950

2000

Aumentodella T :

- trend lineare —

0,85° C nel periodo
1880-2012

Ultimi tre decenni sono
stati i piu caldi dal 1850

Lultimo decennio e
stato il piu caldo.
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1901 — 2012: Variazioni osservate delle
temperature superficiali
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Altri indicatori del CC

(a) Morthern Hemisphere spring snow cover

“[Snow cover (declining)
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= Since the 1950s, many of the
observed changes are
unprecedented over decades
to millennia.

" The atmosphere and ocean
have warmed, the amounts
of snow and ice have
diminished, sea level has
risen, and the concentrations
of greenhouse gases have
increased.
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Variazioni dell’ altezza del livello del mare

Global mean sea level

Change of sea level
in centimetres
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Source: Hugo Ahlenius, GRID-Arendal 2008, updated from Church and White 2006 .




Variazioni nell’ estensione dei ghiacciai

Ghiacciaio della Vedretta di Vallelunga

Muir and Riggs Glaciers
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Variazioni nell’ estensione del ghiaccio Artico

September 1979

September 2007




Passato Prossimo
[2000 years BP]



Ricostruzioni della temperatura superficiale
dell’emisfero nord (NH) tramite “proxy”
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Temperature Change ['C]

Cambiamenti avvenuti in periodi

relativamente recenti

(<]

Medieval
warm period

Little ice age

1000 AD

1500 AD 1900 AD
Year



Temperature Change ['C)

'Optimum Climatico Medievale

| Vichinghi,
sfruttando I’ optimum climatico medioevale

[c]

{ . riescono ad esplorare tutto I’ Atlantico

Medieval
warm period

1000 AD




La Piccola Era Glaciale

Dopo il 1450, le cose cambiano. Sul settore

[c]

Little ice age

Medieval
warm period

Temperature Change ['C)

1000 AD 1500 AD 1900 AD
Year

Le fiere del ghiaccio
sul Tamigi (sec. XVI-XIX)




Passato Remoto
[650K years BP]



La memoria del ghiaccio:

[I'contributo della paleoclimatologia
allo studie del' clima
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650000 anni fa - Presente:

Concentrazioni dei gas serra e “proxy” della temperatura
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The atmospheric concentrations of CO2, methane and nitrous

oxide have increased to levels unprecedented in at least the
last 800,000 years.

Atmospheric CO2

40% increase since
380 1 pre-industrial period

30% of these

360 Ocean observed
40T emitted CO2

1950 1960 1970 1980 1990 2000 2010
Year o DG
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Understanding
the causes

(Beyond detection)



Aerosol
atmosferico

AttiVit_é Variazione della
vulcanica radiazione solare

Effetto Serra

Radiated
out to space

i Effetto Serra
Rinforzato

incoming
solar radiation
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file://localhost/C/0-SERGIO/CONFERENZE%20GENERALI/-%202011/Conferenza%20WWF%20-%20BOLOGNA%20(27.3.2011/Quattro%20passi%20nel%20clima%20-%20L'effetto%20serra%20-%20video.flv

Global Warming: e’ dovuto alla naturale variabillita climatica®?

L'andamento dei cicli solari potrebbe spiegare il Le eruzioni vulcaniche, inizialmente imputate come
riscaldamento di inizio secolo, ma le misurazioni possibile causa di riscaldamento, schermano la
satellitari mostrano un’attivita’ costante negli ultimi 35 radiazione solare incidente, contribuendo a un
anni temporaneo raffreddamento

Effect of Volcanoes on Solar Radiation Reaching the Earth
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MODELLI NUMERICI DEL CLIMA

I/ sistema clima
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MODELLI NUMERICI DEL CLIMA

I/ sistema clima
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| CMCC High Performance Computing System

NEC SX9 A »

Vector Machine |

IBM Power 6
Cluster




Back Incoming
3-D Grid box radiation

Il modello numerico di
simulazione del Sistema Terra

solar radiation
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EVOLUZIONE DElI MODELLI CLIMATICI

The Development of Climate models, Past, Present and Future

Mid-1870s Mid-1280s Early 1980 Late 1980s Prasent day Early 200057
Atmosphera Atmosphera Atmospheara tmosg -
ﬁﬂm": & m - (
Sulphate Sulphate Sulphate
asrosal aarosol asrosol
Mor-sulphate Mor-sulphate:
e Sulphur
ﬂmw-m cycle modal

Box 3, Figure 1: The development of climate models over the last 25 years showing how the
different components are first developed separately and later coupled into comprehensive
climate models.
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1906 - 2005:
Anomalie di T, globale

relative a (1901-1950)

Temperature anomaly (°C)
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Y car
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con 14 AOGCM) Bl Simulazioni con
Il forzante naturale

(
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Solo utilizzando forzanti antropogenici e naturali i risultati

del modelli si riconciliano con le osservazioni.




Il futuro



Possiamo usare dei MODELLI CLIMATICI per fare
SCENARI.

Uno SCENARIO ¢ una descrizione plausibile di cosa potrebbe accadere
nel Sistema Terra come lo conosciamo, basato su un insieme coerente ed
internamente consistente di assunzioni sulle forze che lo guidano
(soprattutto economiche, tassi di sviluppo tecnologico, andamento dei
mercati, etc.).

Gli SCENARI non sono previsioni



Proiezioni di clima futuro

For future climate projections, climate models requires Emission
Scenarios. Models in AR5 use Representative Concentration
Pathway (RCP)

RCP= Representative
Concentration Pathway

RCP8.5

very high GHG
emissions

stabilization

Total anthropogenic radiative forcing (Wm™)
4)]

‘. RCP2.6

mitigation (peak and decline)

1 1 1 L 1 1 1 1 1 1

2000 2020 2040 2060 2080 2100
Year

RCPs represent a range of 21st Century climate policy scenarios



Proiezioni di temperatura media globale superficiale
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(a) Global average surface temperature change
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The temperature increase during the last 100 years was only about 0.8°C.

Global surface temperature change for the end of
the 215t century is likely to exceed 1.5° C relative to
1850-1900 for all scenarios except RCP2.6.



Il livello del mare continuera’ ad aumentare nel
corso del 21mo secolo

Global mean sea level rise
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RCP2.6 (2081-2100): likely range: 26 to 55 cm
RCP8.5 (2081-2100): likely range: 45 to 82 cm ice
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2100: temperatura superficiale

(2 scenari)
1-1,5°C Increase 4 — 7 °C Increase

RCP 8.5

ipcc
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Cambiamenti attesi per la precipitazione sulla
regione Euro-Med (2080-2100 vs 1986-2005)

SUMMER (JJA)

CMIP3 MME A1B (24) CMIP5 MME RCP4.5 (39) MRI-AGCM3.2H A1B (12)
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WINTER (DJF)

CMIP3 MME A1B (24) CMIP5 MME RCP4.5 (39) MRI-AGCM3.2H A1B (12)
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Small changes are expected over the Central and Northern Europe but

a notable reduction (dry conditions) over the Mediterranean region




2100: verso un clima
piu’ caldo e piu’ secco

10% Decrease 10-20% Decrease

1-1,5°C Increase 4 -7 °C Increase

RCP 8.5



Temperature anomaly relative to 18671-1880 (°C)

ipCcC
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8 RCP8.5

RCP6.0

RCP4.5

Total anthropogenic radiative forcing (Wm?)
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Temperature anomaly relative to 1867-1880 (°C)

[ ]
MITIGAZIONE: ICC
) INTERGOVERNMENTAL PANEL ON climate chanee

Limiting climate change will require substantial and
sustained reductions of GHG emissions
RCP2.6 would be the Emission

Scenario to follow if we were
to cap warming at 2°C
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To limit warming to likely less than 2°C as in RCP2.6, requires total
emissions since preindustrial to be limited to less than about 790 PgC.

919 PygC were emitted by 2011.



R
The 1.5°C Report (2018)

This Report responds to the
Invitation for IPCC “... to provide a
Special Report in 2018 on the impacts
of global warming of 1.5 °C above pre-
Industrial levels and related global
greenhouse gas emission pathways”
contained in the Decision of the 21%t
COP (Paris)

The IPCC accepted the invitation,
adding that the Special Report would
look at these issues in the context of
strengthening the global response to
the threat of climate change,
sustainable development, and efforts
to eradicate poverty.

adapted from M. Bindi, SISC Annual Conference, 2



The 1.5°C Report (2018)

A global perspective on climate-related risks
Risks associated with reasons for concern for increasing level

of climate change

(°C relative to 1986-2005)

Global mean temperature change

(°C relative to 1850-1900, as an
approximation of preindustrial levels)
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The 1.5°C Report (2018)

Impacts and risks for selected natural, managed and human systems
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The 1.5°C Report (2018)

H O W C I O S e ar e W e to 1 . 5 OC ? Human-induced warming reached approximately 1°C above

pre-industrial levels in 2017

Current

®* Human-induced warming has already reached e warming rate
about 1° C above pre-industrial levels (high -
confidence).

125 2017

Human-induced
warming

o
5
o

« If the current warming rate continues (+0.2 ° C
per decade), the world would reach human—induced
global warming of 1.5° C around 2040 (high
confidence).

Global temperature change
relative to 1850-1900 (°C)
8

o
o
o

1960 1880 2000 2020 2040 2060 2080 2100

Regional warming in the decade 2006-2015 relative to preindustrial

Annual average warming

« Warming in many reqgions has already exceeded
1.5° C above pre-industrial levels (high
confidence).

« Over_a fifth of the global population live in
regions that have already experienced warming
in at least one season that is greater than 1.5° C
above pre-industrial levels (high confidence)

FAQ1.2, Figure 1 IPCC SR.15, Ch.1, Fig. 1.3 adapted from M. Bindi, SISC Annual Conference, 2



The 1.5°C Report (2018)

What kind of pathways limit warming to 1.5° C and are we

on track?

Cumulative emissions of COz and future non-CO:2 radiative forcing determine
the probability of limiting warming to 1.5°C

i C o u n t ri e s ! p I e d g es a) Observed global temperature change and modeled

agreed in Paris to reduce P ——

thelr emissions are

currently not in line with ] g

responses to stylized anthropogenic emission and forcing pathways

2

Esumated anthropogenic

limiting global warming | BT

to 1.5° C.

Likely range of modeled resp 1o stylized p Y
CiGlobal COz emissions reach net zero in 2055 while net
non-C0: radiative forcing Is reduced after 2030 (grey Inb, c & d)

— [C}Faster CO: reductions (blue In b & ¢) result In a higher
probabllity of imiting warming to L.5°C

+ [CINe reduction of nat non-COz radiative farcing (purple in d} =
resuits in 3 lower probablity of iimiting warming to 1.5°C

by Stylized net global CO: emission pathways <) Cumulative net COz emissions d) Non-CO: radiative forcing pathways
Billlon tonnes COz per year (GtCOa/yr} Blllion tonnes COa (GtCO1) Wiatts per square metre (W/m?)

i

4, COz emissions 3000 4 Z 3
decline from 2020 . - |
|

|

i

{

A 0 reach netzero In Va Non-COz radfative forcing
il /N 2055 or2040 e / - reduced after 2030 or
/ \ (et | ¢ o not reduced after 2030

Cumulative CO:
emisslons In pathways
12064 g reaching net zero In 14

L 2055 and 2060

Q1 2021 205 2103 13- 200 080 zZio o0
Faster immediate CO2 emission reductions Maximum temperature rise is determined D)' cumulative net COz emissions and net non-COz
limit cumulative COz emissions shown in radiative fordng due to methane, nitrous oxide, aerosols and other anthropogenic forclng agents.

panel {c).

Source: PUC Special Report on Ghobal Warming of 1.5°C

adapted from M. Bindi, SISC Annual Conference, 2018



The 1.5°C Report (2018)

What kind of pathways limit warming to 1.5° C and are we

on track?

* A world that is consistent
with holding warming to
1.5° C would see
greenhouse gas
emissions rapidly
decline in the coming
decade (e.g. global net
anthropogenic CO2
emissions decline by
about 45% from 2010
levels by 2030 reaching
net zero around 2050).

Cumulative emissions of COz and future non-CO:2 radiative forcing determine
the probability of limiting warming to 1.5°C

a) Observed global temperature change and modeled
responses to stylized anthropogenic emission and forcing pathways

Global warming relative to 1850-1900 {*C)

Observed monthly global
mean surface temperature

Estimated anthropogenic
warming to date ang
likefy range

1960

b} Stylized net global COz emission pathways
Billlon tonnes COz per year (GtCOa/yr}

COz emisslons
decline from 2020
A toreachnetzeroin
/" |\ 2055 or 2040

Faster immediate CO2 emission reductions
limit cumulative COz emissions shown in

panel {c).
Source: XL Special Report on Ghobal Warming of 1.5°C

Likely range of modeled resp 10 stylized p Y
CIGlobat COz emissions reach net zero in 2055 while net
non-CO: radiative forcing is reduced after 2030 (grey Inb, c & d)

« [ClFaster CO2 reductans (blue Inb & ¢ result in a higher
probabliity of limiting warming to L.5°C

+ [CINe reduction of nat non-COz radiative farcing (purple in d}
resuits in 3 lower probabllity of iimiting warming to 1.5°C

<) Cumulative net COz emissions d) Non-CO:z radiative forcing pathways
Blllion tonnes COa (GtCO1) Wiatts per square metre (W/m?)
- [
/ Non-COz radiazive forcing
!/ reduced after 2030 or
¢ L | not reduced after 2030
7 Cumulative COx
emisslons in pathways
reaching net zero In 11
2055 and 2040 —
\ -

8 LT,

Maxlmum temperature rise is determined by cumulative net COz emisslons and net non-COz
radiative forcing due to methane, nitrous oxide, aerosols and other anthropogenic forcing agents.

adapted from M. Bindi, SISC Annual Conference, 2018
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“What’s the use of having developed a
science well enough to make predictions
iIf, in the end, all we’re willing to do is
stand around and wait for them to come

true?”

Sherwood Rowland

(*) Premio Nobel per la chimica (1995) per gli studi sugli effetti dei CFC sullo ozono in atmosfera.



